

Please check the examination details below before entering your candidate information			
Candidate surname		Other names	\supset
			ノ
Centre Number Candidate Nu	ımber		
Pearson Edexcel International Advanced Level			
Thursday 9 May 2024			
Morning (Time: 1 hour 30 minutes)	Paper reference	wMA11/0	1
Mathematics			9
International Advanced Subsidiary/Advanced Level			
Pure Mathematics P1			
(Variable III)			
You must have: Mathematical Formulae and Statistical	Tables (Ye	ellow), calculator	rks
(\longrightarrow		

Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided

 there may be more space than you need.
- You should show sufficient working to make your methods clear.
 Answers without working may not gain full credit.
- Inexact answers should be given to three significant figures unless otherwise stated.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 11 questions in this question paper. The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- If you change your mind about an answer, cross it out and put your new answer and any working underneath.

Turn over >

giving each term in simplest form.

(3)

$$\int (10 \text{ sc}^4 - \frac{3}{2} \text{ sc}^{-3} - 7) dsc$$

$$= \frac{10x^{5}}{5} - \frac{3}{2} \times \frac{-2}{-2} - 7x + C$$

 $\int \left(10x^4 - \frac{3}{2x^3} - 7\right) \mathrm{d}x$

$$= 2x^{5} + \frac{3}{4}x^{-2} - 7x + C$$

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

2. (i) Given that $m = 2^n$, express each of the following in simplest form in terms of m.

(b) 16^{3n}

(a) 2^{n+3}

(2)

(ii) In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

Solve the equation

$$x\sqrt{3}-3=x+\sqrt{3}$$

giving your answer in the form $p + q\sqrt{3}$ where p and q are integers.

$$(i)$$
 (a) $2^{n+3} = 2 \times 2 = 8 m$

$$(6) 16^{3n} - (2^4)^{3n} - 2^{12n} - m^{12}$$

(
$$\ddot{u}$$
) $x\sqrt{3}-x=3+\sqrt{3}$

$$x(\sqrt{3}-1)=3+\sqrt{3}$$

$$x = (3+\sqrt{3})(\sqrt{3}+1) = 3\sqrt{3}+3+3+\sqrt{3}$$

$$(\sqrt{3}-1)(\sqrt{3}+1) = 3\sqrt{3}+3+3+\sqrt{3}$$

$$\frac{-6+4\sqrt{3}}{2} = 3+2\sqrt{3}$$

Figure 1

Figure 1 shows a sketch of the curve with equation y = f(x).

The curve passes through the points (-1, 0) and (0, 2) and touches the x-axis at the point (3, 0).

On separate diagrams, sketch the curve with equation

(a)
$$y = f(x + 3)$$

(3)

(b)
$$y = f(-3x)$$

(3)

On each diagram, show clearly the coordinates of all the points where the curve cuts or touches the coordinate axes.

Question 3 continued

4. The curve C_1 has equation

$$y = x^2 + kx - 9$$

and the curve C_2 has equation

$$y = -3x^2 - 5x + k$$

where k is a constant.

Given that C_1 and C_2 meet at a single point P

(a) show that

$$k^2 + 26k + 169 = 0$$

(b) Hence find the coordinates of P

(3)

(a)
$$x^2 + Kx - 9 = -3x^2 - 5x + K$$

$$4x^{2} + (K+5)x - 9 - K = 0$$

(b)
$$(K+13)(K+13)=0$$

 $K=-13$

$$x^{2} - 2x + 1 = 0$$

$$(x-1)(x-1)=0$$

$$x=1$$
 $y=1-13(1)-9=-21$
 $P(1,-21)$

Figure 2

Figure 2 shows the plan view of a garden.

The shape of the garden ABCDEA consists of a triangle ABE and a right-angled triangle BCD joined to a sector BDE of a circle with radius 6 m and centre B.

The points A, B and C lie on a straight line with $AB = 10.8 \,\mathrm{m}$

Angle $BCD = \frac{\pi}{2}$ radians, angle EBD = 1.3 radians and AE = 12.2 m

- (a) Find the area of the sector BDE, giving your answer in m²
- (b) Find the size of angle ABE, giving your answer in radians to 2 decimal places.
 (2)
- (c) Find the area of the garden, giving your answer in m² to 3 significant figures.

(3)

(2)

(a) Area of Sector =
$$\frac{1}{2}r^2 \theta^{rad} = \frac{1}{2} \times 6 \times 1.3 = 23.4 \text{ m}^2$$

(b) $\angle ABE = \cos^2 \left(\frac{6^2 + 10.8^2 - 12.2^2}{2 \times 6 \times 10.8} \right)$

Figure 3

In this question you must show all stages of your working.

Solutions relying on calculator technology are not acceptable.

Figure 3 shows

- the line *l* with equation y 5x = 75
- the curve C with equation $y = 2x^2 + x 21$

The line l intersects the curve C at the points P and Q, as shown in Figure 3.

(a) Find, using algebra, the coordinates of P and the coordinates of Q.

(4)

The region R, shown shaded in Figure 3, is bounded by C, l and the x-axis.

(b) Use inequalities to define the region R.

(a)
$$2x^2 + x - 21 = 75 + 5x$$

$$2x^2 - 4x - 96 = 0 \div 2$$

$$x^{2}-2x-48=0$$

$$(x-8)(x+6)=0$$
 $x=8$, $x=-6$

Question 6 continued

at
$$x=-6$$
, $y-5(-6)=75$ $y=45$
at $x=8$, $y=-5(8)=75$ $y=115$

(b)
$$y \ge 0$$
, $y \le 5x + 75$, $y \le 2x^2 + x - 21$, $x \le 0$

7. The curve C has equation y = f(x) where

$$f(x) = 2x^3 - kx^2 + 14x + 24$$

and k is a constant.

- (a) Find, in simplest form,
 - (i) f'(x)
 - (ii) f"(x)

(3)

The curve with equation y = f'(x) intersects the curve with equation y = f''(x) at the points A and B.

Given that the x coordinate of A is 5

(b) find the value of k.

(2)

(c) Hence find the coordinates of B.

(a) (i)
$$f'(x) = 6x^2 - 2Kx + 14$$

$$(\ddot{u}) \int_{0}^{\pi} (x) = 12x - 2k$$

$$6x^{2} - 2Kx - 12x + 14 + 2K = 0 \div 2$$

at
$$x = 5$$
 $3(5)^2 - K(5) - 6(5) + 7 + K = 6$

$$-4K = +52$$
 $K = 13$

$$K = 13$$

(c)
$$32c^2 - 13x - 6x + 7 + 13 = 0$$

$$3x^{2}-19x+20=0$$

Question 7 continued

British Maths

$$(x-5)(3x-4)=0$$

at B
$$x = \frac{4}{3}$$
 $y = 6\left(\frac{4}{3}\right)^2 - 2 \times 13\left(\frac{4}{3}\right) + 14 = -10$

$$B(\frac{4}{3},-10)$$

(Total for Question 7 is 8 marks)

DO NOT WRITE IN THIS AREA

$$y = x(4 - x^2)$$

(a) Sketch the graph of C₁ showing the coordinates of any points of intersection with the coordinate axes.

(3)

The curve C_2 has equation $y = \frac{A}{x}$ where A is a constant.

(b) Show that the x coordinates of the points of intersection of C_1 and C_2 satisfy the equation

$$x^4 - 4x^2 + A = 0$$

(1)

(c) Hence find the range of possible values of A for which C_1 meets C_2 at 4 distinct points.

(3)

(a)

(b) $x(4-x^2) = \frac{A}{x}$

$$3c^{2}(4-x^{2})=A$$

$$4x^{2}-x^{4}=A$$

$$x^{4} - 4x^{2} + A = 0$$

Question 8 continued

b-4ac>0

16-4A>0

For an intersection of 4 points

A has to be a + ve A A > 0

(Total for Question 8 is 7 marks)

9. Given that

- the point A has coordinates (4, 2)
- the point B has coordinates (15, 7)
- the line l, passes through A and B
- (a) find an equation for l_1 , giving your answer in the form px + qy + r = 0where p, q and r are integers to be found.

(3)

The line l_x passes through A and is parallel to the x-axis.

The point C lies on l_2 so that the length of BC is $5\sqrt{5}$

(b) Find both possible pairs of coordinates of the point C.

(4)

(c) Hence find the minimum possible area of triangle ABC.

(2)

(a)
$$m = \frac{7-2}{15-4} = \frac{5}{11}$$

 $y-2 = \frac{5}{11} = \frac{5}{11}$

$$y-2=\frac{5}{11}(x-4)$$

$$11y - 22 = 5x - 26$$

(c) Min area =
$$\frac{1}{2} \times (5-4) \times 5 = \frac{5}{2}$$

10. The curve C has equation y = f(x) where x > 0

Given that

•
$$f'(x) = 6x - \frac{(2x-1)(3x+2)}{2\sqrt{x}}$$

- the point P(4, 12) lies on C
- (a) find the equation of the normal to C at P, giving your answer in the form y = mx + c where m and c are integers to be found,

(4)

(b) find f(x), giving each term in simplest form.

(6)

(a) At
$$P$$
 $f'(x) = 6(4) - \frac{(8-1)(12+2)}{2(4)} = \frac{1}{2}$
Gradient of the normal = 2

Equ. of the normal: $y = 12 = 2(x - 4)$
 $y = 12 = 2x - 8$ $y = 2x + 4$

(b) $f(x) = \int (6x - \frac{6x^2 + 4x - 3x - 2}{2x^2}) dx$
 $= \int (6x - \frac{6x^2}{2x^2} - \frac{x}{2x^{2x}} + \frac{2}{2x^{2x}}) dx$
 $= \int (6x - 3x^{2x} - \frac{1}{2}x^{2x} + x^{2x}) dx$
 $= \frac{6x^2}{2} - 3x^{2x} + \frac{1}{2}x^{2x} + x^{2x} + C$
 $= 3x^2 - \frac{6}{5}x^{5x} - \frac{1}{3}x^{2x} + 2x + C$
 $= 3(4)^2 - \frac{6}{5}(4)^{5/2} - \frac{1}{3}(4)^2 + 2(4)^2 + C$
 $= \frac{164}{15} + C$
 $= \frac{164}{15} + C$
 $= \frac{3}{3}(4)^{5/2} + \frac{3}{3}(4)^{5/2} + \frac{3}{3}(4)^{5/2} + C$

Figure 4

Figure 4 shows a sketch of part of the curve C_1 with equation

$$y = 12 \sin x$$

where x is measured in radians.

The point P shown in Figure 4 is a maximum point on C

(a) Find the coordinates of P.

(2)

The curve C_2 has equation

$$y = 12\sin x + k$$

where k is a constant.

Given that the maximum value of y on C_2 is 3

(b) find the coordinates of the minimum point on C₂ which has the smallest positive x coordinate.

(2)

The curve C_3 has equation

$$y = 12\sin(x+B)$$

where B is a positive constant.

Given that $\left(\frac{\pi}{4}, A\right)$, where A is a constant, is the **minimum** point on C_3 which has the **smallest** positive x coordinate,

- (c) find
 - (i) the value of A,
 - (ii) the smallest possible value of B.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question 11 continued

(a)
$$P\left(\frac{5}{2}\pi, 12\right)$$

$$(b)$$
 $12-3=9$

Minimum point
$$(\frac{3}{2}\pi, -21)$$

(ii)
$$\beta = \frac{3}{2}\pi - \frac{\pi}{4} = \frac{5}{4}\pi$$

DO NOT WRITE IN THIS AREA