THE NORMAL DISTRIBUTION

The Normal Distribution:

 A continuous random variable can take any one from an unlimited number of values.

The probability of taking one specific value is zero but it usually refers to a range and is drawn as a curve.

The curve has specific characteristics

- It looks like a bell (Bell curve)
- It is symmetric about the population mean μ
- Total area under the curve is 1 (The total probability is 1)
- It has points of inflection at $\mu + \sigma$ and $\mu \sigma$
- Approximately 68% of the data lies within one standard deviation of the mean
- 95% of the data lies within two standard deviations of the mean
- 99.7% (Almost all) of the data lies within three standard deviations of the mean

Important notation: If X is a normally distributed random variable we write

 $X \sim N(\mu, \sigma^2)$

Example 1:

The diameters of a metal pin produced by a particular machine, X mm, are modelled as $X \sim N(8, 0.2^2)$. Find:

- a $P(X > 8)$
- **b** $P(7.8 < X < 8.2)$

a. $\mu = 8$ so $P(X > 8)$ refers to the right half of the curve. We know that the whole area $=1$ so one half is 0.5 $X \sim N(8, 0.2^2)$ $P(X > 8) = 0.5$ $\overline{\mathcal{E}}$ $X \sim N(8, 0.2^2)$ b. $\sigma = 0.2$ so $8 - 0.2 = 7.8$, $8 + 0.2 = 8.2$ therefore we actually have $P(7.8 < X < 8.2) = P(\mu - \sigma < X < \mu + \sigma)$ $= 0.68$ 7.8 $\dot{\mathcal{E}}$ 8.2 The Standard Normal Distribution $\mu = 0$ and $\sigma^2 = 1$ $Z \sim N(0, 1^2)$ N for normal \sim means 'is distributed' $f(z)$ \uparrow Φ (a) is often used as shorthand $1 - \Phi(a)$ $\Phi(a)$ for writing $P(A < a)$. $\overline{1} \overline{a}$ $\frac{1}{2}$ -3 -2 -1 0 $\overline{3}$

The Normal Distribution Function

Percentage Points Of The Normal Distribution

The values z in the table are those which a random variable $Z \sim N(0, 1)$ exceeds with probability p; that is, $P(Z > z) = 1 - \Phi(z) = p$.

Example 2:

Use the normal distribution tables to find:

a $P(Z < 1.54)$

b $P(Z > 2.65)$

c $P(Z < -0.75)$

d $P(-1.20 < Z < 1.40)$

b. $P(Z > 2.65) = 1 - P(Z < 2.65) = 1 - 0.9960 = 0.004$

c. $P(Z < -0.75) = P(Z > 0.75) = 1 - P(Z < 0.75) = 1 - 0.7734 = 0.2266$

d. $P(-1.20 < Z < 1.40) = P(Z < 1.40) - P(Z < -1.20)$ $P(Z < 1.40) = 0.9192$ from the table $P(Z < -1.20) = P(Z > 1.20) = 1 - P(Z < 1.20) = 1 - 0.8849 = 0.1151$ $P(-1.20 < Z < 1.40) = 0.9192 - 0.1151 = 0.8041$

Example 3:

Find the value of the constant a such that $P(Z < a) = 0.7517$

Page **5** of **10**

Draw a diagram to help visualise the problem look in the table for an area of 0.7517 you will find that $a = 0.68$

Example 4:

Find the value of the constant a such that $P(Z > a) = 0.100$

For $P(Z > a)$ it's better to check the percentage points table for the given value it makes solving a lot faster.

In this problem 0.100 is listed and $a = 1.2816$

Example 5:

Find the value of the constant a such that $P(Z > a) = 0.0322$

Although this is exactly like the previous example, yet unfortunately we can't find 0.0322 in the percentage points table. We have to solve it the usual way then. Find $1 - 0.0322 = 0.9678$ now $P(Z < a) = 0.9678$ which gives a = 1.85

Example 6:

Find the value of the constant a such that $P(Z < a) = 0.1075$

First we draw the problem 0.1075 is not in the table so we use symmetry 1-0.1075 = 0.8925 which gives a = 1.24 so our answer is $a = -1.24$

Example 7:

Use the tables to find $P(Z < a) = 0.75$

0.75 is not an exact number in the table our options are either 0.7486 or 0.7517 where 0.7486 is closer so we use it to get $a = 0.67$

Standard Normal distribution:

The data is coded so we get a mean of 0 and standard deviation of 1. This gives us the ability to use the standard table.

To do this we change Z to

$$
Z = \frac{X - \mu}{\sigma}
$$

Example 1:

The random variable $X \sim N(50, 4^2)$. Find:

a $P(X < 53)$ **b** $P(X \ge 55)$

a.
$$
Z = \frac{X - \mu}{\sigma} = \frac{53 - 50}{4} = 0.75
$$
 $P(X < 53) = P(Z < 0.75) = 0.7734$

b.
$$
Z = \frac{X - \mu}{\sigma} = \frac{55 - 50}{4} = 1.25
$$
 $P(X > 55) = P(Z > 1.25)$

The table says that $P(Z < 1.25) = 0.8944$

so
$$
P(X > 55) = P(Z > 1.25) = 1 - 0.8944 = 0.1056
$$

Example 2:

The random variable $Y \sim N(20, 9)$. Find the value of b such that $P(Y > b) = 0.0485$

$$
P(Y > b) = 0.0485 \text{ so } P(Y < b) = 1 - 0.0485 = 0.9515
$$

$$
P\left(Z < \frac{b - 20}{3}\right) = 0.9515 \text{ From the table 0.9515 gives a = 1.66}
$$

$$
\frac{b - 20}{3} = 1.66 \text{ so b} = 24.98
$$

Example 3:

The random variable $X \sim N(\mu, 3^2)$.

Given that $P(X > 20) = 0.20$, find the value of μ .

This one is in the percentage points table 0.2 gives $a = 0.8416$ so no need to search in the standard normal distribution table

 $20-\mu$ $\frac{\mu - \mu}{3} = 0.8416$ $\mu = 17.5$ (3 s.f.)

Example 4:

A machine makes metal sheets with width, X cm, modelled as a normal distribution such that $X \sim N(50, \sigma^2)$.

- a Given that $P(X < 46) = 0.2119$, find the value of σ .
- **b** Find the 90th percentile of the widths.

so
$$
\frac{x-50}{5}
$$
 = 1.2816 90th percentile of the widths = 56.4

Example 5:

The random variable $X \sim N(\mu, \sigma^2)$.

Given that $P(X > 35) = 0.025$ and $P(X < 15) = 0.1469$, find the value of μ and the value of σ .

First, we draw the problem The right part $P(Z > a_1) = 0.025$ can be found in the percentage points table $a_1 = 1.96$

The left part we use symmetry

 $P(Z < a_2) = 0.1469$ so we look in the standard normal distribution table for 1- 0.1469 = 0.8531 which gives 1.05 so $a_2 = -1.05$

Now we standardize our data $35-\mu$ σ =1.96, 1.96 + = 35 ………………. (1)

$$
\frac{15-\mu}{\sigma} = -1.05 \qquad , \quad -1.05 \sigma + \mu = 15 \dots (2)
$$

Solving for equations (1) and (2) simultaneously we get $\sigma = 6.64$ (3 s.f.) $\mu = 22.0$ (3 s.f.)