

Mark Scheme (Results)

November 2024

Pearson Edexcel International GCSE Mathematics A (4MA1) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2024 Question Paper Log Number P75936A Publications Code 4MA1_2H_2411_MS All the material in this publication is copyright © Pearson Education Ltd 2024

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- cao correct answer only
- ft follow through
- o isw ignore subsequent working
- o SC special case

- oe or equivalent (and appropriate)
- o dep dependent
- indep independent
- o awrt answer which rounds to
- o eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Internationa	International GCSE Maths							
Figures in inverted commas must come from a correct method previously seen unless otherwise stated.								
Q	Working	Answer	Mark	Notes				
1	$\frac{12}{7}(x)\frac{35}{16}$ oe		3	M1 for both fractions written as improper fractions				
	$\frac{12}{7} \times \frac{35}{16} = \frac{420}{112} \text{ oe eg } \frac{192}{112} \times \frac{245}{112} = \frac{47040}{12544} \text{ or}$ $\frac{\cancel{12}}{\cancel{7}^1} \times \frac{\cancel{35}}{\cancel{16}^4} \stackrel{5}{\cancel{9}} \text{ oe or}$ $\text{eg } \frac{12}{7^1} \times \frac{\cancel{35}}{16} = \frac{60}{16} \text{ oe}$			M1 for multiplying the numerators and multiplying the denominators or cancelling the fractions fully or cancelling fractions partially and multiplying across				
	$\frac{12}{7} \times \frac{35}{16} = \frac{420}{112} = \frac{15}{4} = 3\frac{3}{4} \text{ oe or}$ $\frac{12}{7} \times \frac{35}{16} = \frac{420}{112} = 3\frac{84}{112} = 3\frac{3}{4} \text{ oe}$ $\frac{\cancel{12}^3}{\cancel{7}^1} \times \frac{\cancel{35}^5}{\cancel{16}^4} = \frac{15}{4} = 3\frac{3}{4} \text{ oe}$ Working required	shown		A1 completion to given result. dep on M2 If a student shows clearly in their working that $3\frac{3}{4} = \frac{15}{4}$ they only need to show that the LHS comes to $\frac{15}{4}$				
				Total 3 marks				

2 (a)	1.45	1	B1	• allow 1.449 or 1.44999(9)
(b)	1.35	1	B1	cao
				SCB1 for (a) 1.35 (b) 1.45 [score B0B1]
				Total 2 marks

3	$\cos 43 = \frac{x}{8.6} \text{ or }$		3	M1	a correct trig statement for x or QR or a correct Pythagoras statement for x^2
	$\tan 43 = \frac{8.6\sin 43}{x} \text{ or }$				
	$\sin(90-43) = \frac{x}{8.6}$ or				
	$\frac{x}{\sin(90-43)} = \frac{8.6}{\sin 90}$ or				
	$(x^2 =)8.6^2 - (8.6\sin 43)^2$ or $(x^2 =)8.6^2 - 5.8(65)^2$				
	$(x =) 8.6\cos 43 \text{ or}$			M1	a fully correct calculation to find x (some students go straight to this and gain
	$(x=)\frac{8.6\sin 43}{\tan 43} \left(=\frac{"5.8(65)"}{\tan 43} \right) \text{ or }$				M2)
	$(x=)8.6\sin(90-43)$ or				
	$(x=)\frac{8.6\sin 47}{\sin 90}$ or				
	$(x =) \sqrt{8.6^2 - "5.8(65)"^2}$				
	Correct answer scores full marks (unless from	6.3		A1	awrt 6.3 seen even if then rounded
	odvious incorrect working)				incorrectly
					Total 3 marks

4	(a)	$357 \div 0.17 \text{ oe}$ or $0.17N = 357 \text{ or } \frac{17}{100} \times N = 357 \text{ oe}$ or $\frac{357 \times 100}{17} \text{ oe eg } 357 \times 5.8(82)$		2	M1	a correct calculation for <i>N</i> or a correct equation in <i>N</i> (not 17% \times <i>N</i> = 357)
		Correct answer scores full marks (unless from obvious incorrect working)	2100		A1	cao
	(b)	806 - 650 (= 156) or $\frac{806}{650} (=1.24) \text{ oe}$ $\frac{806 - 650}{650} (\times 100) (= 0.24 (\times 100))$ or "1.24" × 100 (= 124) or "1.24" - 1 (= 0.24)		3	M1 M1	a correct calculation for the percentage increase or seeing 124 or 0.24 as either the answer or in part of the working.
		Correct answer scores full marks (unless from obvious incorrect working)	24		A1	cao (SCB1 if no marks scored for an answer of 19.3 – 19.4)
						Total 5 marks

5	1 - (0.14 + 0.17 + 0.21) (= 0.48) or 0.14 + 0.17 + 0.21 + x + x = 1.02 or		4	M1	Correct use of probabilities total 1
	0.14 + 0.17 + 0.21 + x + x = 1 de of				correct calculation for an estimate for
	$0.14 \times 400 \ (= 56) $ or				number of times the spinner will land
	$0.17 \times 400 \ (= 68)$ or				on 2 or on 3 or on 5
	$0.21 \times 400 (= 84)$ or				
	$(0.14 + 0.17 + 0.21) \times 400 (= 208)$ oe eg $0.52 \times 400 (= 208)$				
	"0.48" ÷ 2 (= 0.24) [could be in table]			M1	A completely correct method to find
	or				the probability that the spinner will
	400 - 56 - 68 - 84 (= 192) oe eg 400 - 208 (= 192)				land on 4
	or				or
	$0.48 \times 400 \ (= 192)$				a completely correct method to find the
					number of times the spinner will land
					on 1 or on 4
	" (0.24) " × 400 oe or			M1	a correct calculation to find the
	(100) · 0				estimate required
	$192^{\circ} \div 2$				or
					an answer leading from 96 seen
					eg <u></u>
					- 400
	Correct answer scores full marks (unless from obvious incorrect	96		A1	cao
	working)				SCB1 for 104 if no other marks have
					been awarded
					Total 4 marks

6	$8 \times 6 (= 48)$ $0.5 \times 8 \times 6 (= 24)$ $15 \times 8 (= 120)$ $15 \times 6 (= 90)$ $15 \times 10 (= 150)$		3	M1	For a correct method to find the areas of 2 different faces (ie not 2 triangles) allow 8 × 6 as one area (allow with incorrect areas for this mark)
	$0.5 \times 8 \times 6 (= 24) (\times 2 (= 48)) \text{ oe}$ $15 \times 8 (= 120)$ $15 \times 6 (= 90)$ $15 \times 10 (= 150)$ (measurements with intention to add for the 2nd M mark) Surface area = "120" + "90" + "150" + "24" + "24" [allow "120" + "90" + "150" + "48" + "48"]	408		M1	for adding together 4 or 5 values for area (condone 48 as 1 or 2 areas) at least 3 of which are from a correct method NB: $(6 + 8 + 10) \times 15$ (sum must be seen) is 3 faces but only award this if clearly not intended to be the volume – eg by the addition of the area of a triangular end.
	Correct answer scores full marks (unless from obvious incorrect working)	408		Al	cao SCB2 for an answer of 456 if no other marks awarded
					Total 3 marks

Г			
7 (a)(i)	<i>y</i> *	3	B1 $x = 3$ drawn
(ii)	7		B1 $y = 1$ drawn
(iii)	5		B1 $x + y = 7$ drawn
			Allow dashed lines or solid lines for graphs of minimum length 2 squares condone lack of labels if unambiguous
	Line length 2 cm + but shaded area must be enclosed for the mark in (b)		
	cherosed for the mark in (b)		
(b)	- If unlabelled, award: x = 3 and y = 3 B1 B0 y = 1 and x = 1 B0 B1 x = 3 and x = 1 and y = 1 B0 B1 x = 3 and y = 1 and y = 3 B1 B0 x = 3 and x = 1, y = 1 and y = 3 B0 B0	1	B1 correct region shaded – shaded in or out – labelled R or clear intention to be the required region (ft only for one vertical line (not $x = 0$), one horizontal line (not $y = 0$) and one line with a negative gradient eg $x = 1$, $y = 3$ and $x + y = 7$)
			Total 4 marks

8	$\frac{4 \times 145 \ (= 580) \text{ or } 5 \times 142 \ (= 710)}{\text{or}}$ $\frac{145 + 145 + 145 + 145 + x}{5} = 142 \text{ oe}$		3	M1	for one correct product or for a correct equation for the weight of the last banana
	$5 \times 142 - 4 \times 145$ or "710" - "580" or 145 + 145 + 145 + 145 + $x = 5 \times 142$			M1	A fully correct method to find the weight of the 5th banana or a fully correct equation to find the missing weight with no denominator
	<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	130		A1	
					Total 3 marks

						-
9	$20\ 000 \times 1.035\ (= 20\ 700)$ oe		3	M1	For finding	M2 for $20\ 000 \times 1.035^3$
	or $20\ 000 \times 0.035\ (=700)$ oe				103.5% or 3.5%	[NB: $1.035^3 = 1.108717$]
					of 20 000	or
	(NB: accept $\left(1 + \frac{3.5}{1}\right)$ for 1.035 but not $(1 + 3.5\%)$)					
	$\left(140. \text{ accept}\left(1 + \frac{1}{100}\right)^{101} + \frac{1}{100}\right)$ for 1.055 but not $(1 + 5.5\%)$					$20\ 000 \times 1.035^4$
	"20 700" × 1.035 (= 21 424.5)			M1	dep for a	(= 22 950)
	"21 424.5"× 1.035 oe				complete	
	eg				method	
	$20700 \times 0.035 = 724.5 \& 20700 + 724.5 = 21424.5$					
	21424.5×0.035 = 749.85 & 21424.5 + 749.85					
	<i>Correct answer scores full marks (unless from obvious</i>	22 174		A1	Allow 22 174 - 22	2175
	incorrect working)				(if you see the con	rrect answer and then 20 000
					is subtracted to gi	ve 2174 - 2175 then award
					full marks	
					2174 – 2175 with	no working gains 2 marks)
					SCB2 for (2000)	$(1.035^3) = 2217$ [misread]
					SCB2 for 22160	$(20\ 000 \times 1.108)$
					SCB2 for 22180 ($(20\ 000 \times 1.109)$
					SCB1 if no marks	s awarded for any of these are
					seen (not necessar $(20,000, 1,025n)$	rily the answer)
					(20000×1.035^{n}))
					$20000 \times 0.965^{\circ}$ (=	= 1/9/2)
					20000×0.105 (=	= 2100)
					$20000 \times 1.105($	$(= 22 \ 100)$
					20000×1.105^2 (= 21 424.5)
						Total 3 marks

10	3x+6+5x+8+7x-9=320 oe eg $15x+5=320Could be implied by (320-5) \div 15 oe$		5	M1	a correct method to find the correct value of x for year 11 students eg an equation
	(x =) 21 or (3x =) 63			A1	For the correct value for x or $3x$
	Correct answer of 21 or 63 scores 2 marks (unless from obvious incorrect working)				
	$3 \times$ "their 21" + 6 (= 69) or			M1ft	dep on M1 a correct method to find the number for year
	"their 63 " + 6 (= 69)				11 Biology
	Look for 69 by the side of the table				ft their value of x as long as only one value of x is offered and it is a clear intention to be x
	$\frac{126}{360} \times 300 (=105)$ or $\frac{300}{360} (=\frac{5}{6})$ and $\frac{5}{6} \times 126 (=105)$			M1	indep for a correct method to find the number of year 10 whose favourite is Biology
	or $\frac{360}{300} = 1.2$ and $126 \div 1.2 (= 105)$ oe				$\frac{300}{360} = 0.83$ (so allow 0.83)
		36		A1	cao dep on A1 previously scored
					Total 5 marks

11	int angle of pentagon = $(3 \times 180) \div 5$ (= 108) oe or ext angle of pentagon = $360 \div 5$ (= 72) oe		5	M1	allow in working but not if labelled in wrong place on diagram (unless clearly started again)
	int angle of hexagon = $(4 \times 180) \div 6$ (= 120) or ext angle of hexagon = $360 \div 6$ (= 60)			M1	allow in working but not if labelled in wrong place on diagram (unless clearly started again)
	360 - ("108" + "120") (= 132) oe or "60" + "72" (= 132) or (180 - "108") + (180 - "120") (= 132)			M1	A fully correct method to find the size of obtuse angle <i>AEF</i> but not if labelled in wrong place on diagram [Figures in inverted commas must come from correct working]
	$\begin{bmatrix} 180 - ("60"+"72") \end{bmatrix} \div 2 \text{ oe or } \frac{180 - "132"}{2} \text{ oe} \\ \text{or} \\ \begin{bmatrix} 180 - (180 - "108") - (180 - "120") \end{bmatrix} \div 2 \text{ oe} \end{bmatrix}$			M1	A fully correct method to find the size of angle <i>EAF</i> [Figures in inverted commas must come from correct working]
	<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	24		A1	cao
					Total 5 marks

12 (a)	eg $\frac{3(3x+2)-5(2x+1)}{15}(=x)$ oe eg $\frac{1-x}{15}(=x)$ or $\frac{3(3x+2)}{15} - \frac{5(2x+1)}{15}(=x)$ or $3(3x+2) - 5(2x+1) = x \times 5 \times 3$ oe or $\frac{3}{5}x + \frac{2}{5} - \frac{2}{3}x - \frac{1}{3}(=x)$		3	M1	Writing fractions over a common denominator or removing denominator or writing each term separately – if student has expanded/multiplied at this stage, then allow one of the 4 terms on the LHS incorrect. If the student has removed the denominator at this stage then a correct method must be shown or implied
	eg $9x + 6 - 10x - 5 = 15x$ oe or $1 - x = 15x$ oe eg $9x + 6 = 15x + 10x + 5$ or $\frac{-x+1}{15} = \frac{15x}{15}$ or $-\frac{16}{15}x = -\frac{1}{15}$			M1	An equation with no brackets or fractions or an equation with a common denominator for all terms with numerators simplified (allow one error for the 4 terms on the LHS only (they may have moved these to the RHS) across the 2 M marks and ft for simplifying)
	Working required	$\frac{1}{16}$		A1	oe 0.0625 (allow 0.062 or 0.063) dep on M1

(b)	$f^2 = \frac{a+bc}{c-d}$		4	M1	for squaring both sides in a correct equation
	$eg cf^2 - df^2 = a + bc$			M1	for multiplying by the denominator and expanding in a correct equation
	eg $cf^2 - bc = a + df^2$			M1	for isolating terms in <i>c</i> on one side and other terms the other in a correct equation
	<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	$c = \frac{a + df^2}{f^2 - b}$		A1	oe eg $c = \frac{-a - df^2}{b - f^2}$
					Total 7 marks

13 (a)		4, 19, 39, 50, 56, 60	1	B1	
(b)			2	B2	(use overlay) Fully correct cf graph – points at ends
					of intervals and joined with curve or line segments.
					If not B2 then B1(ft from a table with only one
					arithmetic error that may be continued through table)
					for 5 or 6 of their points at ends of intervals and joined
					with curve or line segments
					OR for 5 or 6 points plotted correctly at ends of
					intervals not joined OR for 5 or 6 points from table
					plotted consistently within each interval (not at upper
					ends of intervals) at their correct heights and joined
					with smooth curve or line segments.
					(ignore part from 0 to first plotted point when looking
					at curve/line segments)
(c)	ft an increasing graph as student	2.3 - 2.7	1	B1ft	Any value in range if an increasing graph is drawn
	is asked to 'use your graph'				(ft their graph reading across at 30 or 30.5)
(d)	ft an increasing graph (if reading		2	M1	For a correct method to take a reading at 3.7 kg
	can be taken) as student is asked				eg $45 - 48$ or a correct value for their graph
	to 'use your graph'				(one square tolerance)
	If a correct graph is drawn and	12, 13, 14 or 15		A1ft	Award full marks for an answer in the range if a
	answer is in the given range, then				correct cf graph is drawn and ft their increasing graph
	award the marks				if value outside range
					Must be a whole number value (non-integer value
					gains M1 only)
					Total 6 marks

$ \begin{array}{c} \operatorname{eg} 3^{2n} & (-3 \times 3^{-2n}) \\ \operatorname{or} \\ 3^{2n-1} \left(=3^{3} \times 3^{1-2n}\right) \\ \operatorname{or} \\ \left(3^{2n+3} =\right) 3^{7} \times 3^{1-2n} \\ \operatorname{or} \\ \left(\frac{3^{2n+3}}{3^{4}} =\right) 3^{4-2n} \\ \operatorname{or} \\ \left(\frac{3^{2n+3}}{3^{4}} =\right) 3^{3} \times 3^{5-2n} \\ \operatorname{or} \\ \frac{3^{2n}}{3^{4}} = 3^{1-2n} \\ \operatorname{or} \\ \frac{3^{2n}}{3^{4}} = 3^{1-2n} \\ \operatorname{or} \\ 2n+3-4 \\ \left(=\ldots\right) \operatorname{or} \\ \left(\ldots = 3 + 1 - 2n \operatorname{or} \\ 2n-1 \\ \left(=\ldots\right) \operatorname{or} \\ \left(\ldots = 3 + 1 - 2n \operatorname{or} \\ 2n-1 \\ \left(=\ldots\right) \operatorname{or} \\ \left(\ldots = 3 + 1 - 2n \operatorname{or} \\ 2n-1 \\ \left(=\ldots\right) \operatorname{or} \\ \left(\ldots = 3 + 1 - 2n \operatorname{or} \\ 2n \\ \left(\ldots = 3 + 1 - 2n \right$
or $3^{2n-1} \left(=3^3 \times 3^{1-2n}\right)$ or $\left(3^{2n+3}=\right)3^7 \times 3^{1-2n}$ or $\left(\frac{3^{2n+3}}{3^4}=\right)3^{4-2n}$ or $\left(\frac{3^{2n+3}}{3^4}=\right)3^{4-2n}$ or $\left(3^{2n+3}=\right)3^3 \times 3^{5-2n}$ or $\frac{3^{2n}}{3^4}=3^{1-2n}$ (division by 3 ³) This is not an exhaustive list or 2n+3-4 (=) or (=) $3+1-2n$ or 2n-1 (=) or (=) $4-2n$ (no other options for this) D the providing it is clear that they apply to the LHS or to the RHS
$3^{2n-1} \left(=3^{3} \times 3^{1-2n}\right)$ or $\left(3^{2n+3}=\right)3^{7} \times 3^{1-2n}$ or $\left(\frac{3^{2n+3}}{3^{4}}=\right)3^{4-2n}$ or $\left(3^{2n+3}=\right)3^{3} \times 3^{5-2n}$ or $\left(3^{2n+3}=\right)3^{3} \times 3^{5-2n}$ or $\frac{3^{2n}}{3^{4}}=3^{1-2n}$ (division by 3 ³) This is not an exhaustive list or $2n+3-4 \ (=) \text{ or } (=) 3+1-2n \text{ or}$ $2n-1 \ (=) \text{ or } (=) 4-2n \text{ (no other options for this)}$ or $LHS \text{ or to the RHS}$
or $(3^{2n+3} =) 3^7 \times 3^{1-2n}$ or $\left(\frac{3^{2n+3}}{3^4} =\right) 3^{4-2n}$ or $(3^{2n+3} =) 3^3 \times 3^{5-2n}$ or $\frac{3^{2n}}{3^4} = 3^{1-2n}$ (division by 3 ³) This is not an exhaustive list or 2n+3-4 (=) or (=) $3+1-2n$ or 2n-1 (=) or (=) $4-2n$ (no other options for this) Units of the set o
or $(3^{2n+3} =) 3^7 \times 3^{1-2n}$ or $\left(\frac{3^{2n+3}}{3^4} =\right) 3^{4-2n}$ or $(3^{2n+3} =) 3^3 \times 3^{5-2n}$ or $\left(3^{2n+3} =) 3^3 \times 3^{5-2n}$ or $\frac{3^{2n}}{3^4} = 3^{1-2n}$ (division by 3 ³) This is not an exhaustive list or 2n+3-4 (=) or (=) $3+1-2n$ or 2n-1 (=) or (=) $4-2n$ (no other options for this) or Has include digeord) or f (mass include digeord) or f (division by 3 ³) This is not an exhaustive list or 2n-1 (=) or (=) $3+1-2n$ or 2n-1 (=) or (=) $4-2n$ (no other options for this)
$(3^{2n+3} =) 3^7 \times 3^{1-2n}$ or $\left(\frac{3^{2n+3}}{3^4} =\right) 3^{4-2n}$ or $(3^{2n+3} =) 3^3 \times 3^{5-2n}$ or $\frac{3^{2n}}{3^4} = 3^{1-2n} (\text{division by } 3^3)$ This is not an exhaustive list or $2n+3-4 (= \dots) \text{ or } (\dots =) 3+1-2n \text{ or}$ $2n-1 (= \dots) \text{ or } (\dots =) 4-2n \text{ (no other options for this)}$ or $LHS \text{ or to the RHS}$
or $\left(\frac{3^{2n+3}}{3^4}\right)^{3^{4-2n}}$ or $\left(3^{2n+3}\right)^{3} \times 3^{5-2n}$ or $\frac{3^{2n}}{3^4} = 3^{1-2n} \text{(division by 3^3)}$ This is not an exhaustive list or $2n+3-4 (= \dots) \text{ or } (\dots =) 3+1-2n \text{ or}$ $2n-1 (= \dots) \text{ or } (\dots =) 3+1-2n \text{ or}$ $2n-1 (= \dots) \text{ or } (\dots =) 4-2n \text{(no other options for this)}$ or
$\begin{pmatrix} \frac{3^{2n+3}}{3^4} = \\ 3^{4-2n} \\ \mathbf{or} \\ \left(3^{2n+3} = \\ \right)3^3 \times 3^{5-2n} \\ \mathbf{or} \\ \frac{3^{2n}}{3^4} = 3^{1-2n} (\text{division by } 3^3) \\ This is not an exhaustive list \\ \mathbf{or} \\ 2n+3-4 (= \dots) \mathbf{or} (\dots =) 3+1-2n \text{ or} \\ 2n-1 (= \dots) \mathbf{or} (\dots =) 4-2n \text{ (no other options for this)} \end{pmatrix} $
$\begin{bmatrix} \frac{3}{3^4} = \end{bmatrix} 3^{4-2n} \\ \text{or} \\ (3^{2n+3} =) 3^3 \times 3^{5-2n} \\ \text{or} \\ \frac{3^{2n}}{3^4} = 3^{1-2n} (\text{division by } 3^3) \\ This is not an exhaustive list \\ \text{or} \\ 2n+3-4 (= \dots) \text{ or } (\dots =) 3+1-2n \text{ or} \\ 2n-1 (= \dots) \text{ or } (\dots =) 4-2n \text{ (no other options for this)} \end{bmatrix} $
(3^{n}) or $(3^{2n+3} =) 3^{3} \times 3^{5-2n}$ or $\frac{3^{2n}}{3^{4}} = 3^{1-2n} \text{(division by 3^{3})}$ This is not an exhaustive list or $2n + 3 - 4 (= \dots) \text{ or } (\dots =) 3 + 1 - 2n \text{ or}$ $2n - 1 (= \dots) \text{ or } (\dots =) 3 + 1 - 2n \text{ or}$ $2n - 1 (= \dots) \text{ or } (\dots =) 4 - 2n \text{(no other options for this)}$
or $(3^{2n+3} =) 3^3 \times 3^{5-2n}$ or $\frac{3^{2n}}{3^4} = 3^{1-2n}$ (division by 3 ³) This is not an exhaustive list or 2n+3-4 (=) or $(=) 3+1-2n$ or 2n-1 (=) or $(=) 4-2n$ (no other options for this) For one of the 4 expressions shown, providing it is clear that they apply to the LHS or to the RHS
$\begin{pmatrix} (3^{2n+3} =) 3^3 \times 3^{5-2n} \\ \text{or} \\ \frac{3^{2n}}{3^4} = 3^{1-2n} (\text{division by } 3^3) \\ \text{This is not an exhaustive list} \\ \text{or} \\ 2n+3-4 (= \dots) \text{ or } (\dots =) 3+1-2n \text{ or} \\ 2n-1 (= \dots) \text{ or } (\dots =) 4-2n (\text{no other options for this}) \\ \end{pmatrix} $
or $\frac{3^{2n}}{3^4} = 3^{1-2n} (\text{division by } 3^3)$ This is not an exhaustive list or $2n + 3 - 4 (= \dots) \text{ or } (\dots =) 3 + 1 - 2n \text{ or}$ $2n - 1 (= \dots) \text{ or } (\dots =) 4 - 2n (\text{no other options for this})$ For one of the 4 expressions shown, providing it is clear that they apply to the LHS or to the RHS
$\frac{3^{2n}}{3^4} = 3^{1-2n} (\text{division by } 3^3)$ This is not an exhaustive list or $2n + 3 - 4 (= \dots) \text{ or } (\dots =) 3 + 1 - 2n \text{ or}$ $2n - 1 (= \dots) \text{ or } (\dots =) 4 - 2n (\text{no other options for this})$ For one of the 4 expressions shown, providing it is clear that they apply to the LHS or to the RHS
$\frac{1}{3^4} = 3^{1-2n} \text{ (division by 3^3)}$ This is not an exhaustive list or $2n + 3 - 4 \ (= \dots) \text{ or } (\dots =) \ 3 + 1 - 2n \text{ or}$ $2n - 1 \ (= \dots) \text{ or } (\dots =) \ 4 - 2n \text{ (no other options for this)}$ or $LHS \text{ or to the RHS}$
3 This is not an exhaustive listoror $2n + 3 - 4 \ (= \dots)$ or $(\dots =) \ 3 + 1 - 2n$ or $2n - 1 \ (= \dots)$ or $(\dots =) \ 4 - 2n$ (no other options for this)For one of the 4 expressions shown, providing it is clear that they apply to the LHS or to the RHS
For one of the 4 expressions shown, $2n+3-4 \ (= \dots)$ or $(\dots =) \ 3+1-2n$ or $2n-1 \ (= \dots)$ or $(\dots =) \ 4-2n$ (no other options for this)
For one of the 4 expressions shown, $2n+3-4 \ (= \dots)$ or $(\dots =) \ 3+1-2n$ or $2n-1 \ (= \dots)$ or $(\dots =) \ 4-2n$ (no other options for this)
2n+3-4 () or (=) $3+1-2n$ or 2n-1 (=) or (=) $4-2n$ (no other options for this) providing it is clear that they apply to the LHS or to the RHS
2n-1 (=) or (=) $4-2n$ (no other options for this) LHS or to the RHS
eg $3^{2n+3-4} = 3^{3+1-2n}$ or $3^{2n+3} = 3^{8-2n}$ M1 A correct single power of 3 on both sides
or or a correct equation in <i>n</i> without indices
$3^{2n-1} = 3^{4-2n}$ (some students may go straight to this and
or gain M2)
2n + 3 - 4 = 3 + 1 - 2n oe eg $2n - 1 = 4 - 2n$
Working required 5 A1 oe dep on M1
Total 3 marks

	//·····		_		
15	$eg (10\ 000x =) 7636.36$		2	M1	For 2 recurring decimals that when subtracted give
	(100x =) 76.36				a whole number or terminating decimal with
					intention to subtract.
	or (1000 <i>x</i> =) 763.63				(ie give 75.6 or 756 or 7560 etc)
	(10x =) 7.63				eg $(10\ 000x =)$ 7636.36 and $(100x =)$ 76.36
					or $(1000x =)$ 763.63 and $(10x =)$ 7.63
	or $(100x =)$ 76.363				or $(100x =)$ 76.363 and $(x =)$ 0.763
	(x =) 0.763				with intention to subtract.
					(if recurring not shown then showing at least one
	oe				of the numbers to at least 5sf)
					7
					or $\frac{-10}{10} + 1000x(63.63) - 10x(0.63)$
	eg 10 000x - 100x = 7636.36 76.36 = 7560	shown		A1	for completion to $\frac{42}{42}$ does on M1 and must use
	and 7560 42 an				1000000000000000000000000000000000000
	and $\frac{1}{9900} = \frac{1}{55}$ or				algebra for this final mark to be awarded
	1000x - 10x = 763.63 7.63 = 756				5
	(990x = 756)				756 42
	756 42				[allow for instance $99x = 75.6$ and then $\frac{1}{990} = \frac{1}{55}$]
	and $\frac{1}{990} = \frac{1}{55}$ or				······································
	100x - x = 76.363 0.763 = 75.6				No algebra used gets a maximum of 1
	and 75.6 42				
	$and - \frac{1}{99} = \frac{1}{55}$				
	(99x = 75.6)				
	or				
	7 63 7×99+63 42				
	$\frac{10^{+}}{10^{+}}\frac{990}{990} = \frac{990}{990} = \frac{55}{55}$				
I	Working required				Total 2 marks

16 (a)(i)		108	1	B1	Accept 252
(ii)					dep on (a)(i) correct
			1		Angle of the control (mide cint/origin (middle) is trying the
					<u>Angle</u> at the <u>centre(inidpoint/origin/iniddie)</u> is <u>twice</u> the angle at the circumference(side/edge/arc) oe
				D1	
				BI	Inscribed angle is half of the central angle oe
					(accept \angle for 'angle' and 2 × or double for twice)
		Correct			, i c ,
		reason			
(b)		26	1	B 1	
(c)			2		
	$ABC = 180 - "64"$ or $\frac{"108" + "124"}{}$			M1ft	follow through their $(\frac{1}{2}(180 - 108))$ in 28 + 36''= 64
	2				ONLY FOLLOW THROUGH THEIR 108
	Correct answer scores full marks				
	(unless from obvious incorrect	116		A1	cao
	working)				T-4-1 5
					1 otal 5 marks

17	$(\overrightarrow{HF} =) \begin{pmatrix} 4\\14 \end{pmatrix} + \begin{pmatrix} 5\\-2 \end{pmatrix} \begin{bmatrix} = \begin{pmatrix} 9\\12 \end{pmatrix} \end{bmatrix} \text{ or } \begin{pmatrix} 4\\14 \end{pmatrix} - \begin{pmatrix} -5\\2 \end{pmatrix} \begin{bmatrix} = \begin{pmatrix} 9\\12 \end{pmatrix} \end{bmatrix} \text{ oe}$ $(\overrightarrow{FH} =) \begin{pmatrix} -5\\2 \end{pmatrix} + \begin{pmatrix} -4\\-14 \end{pmatrix} \begin{bmatrix} = \begin{pmatrix} -9\\-12 \end{pmatrix} \end{bmatrix} \text{ or } \begin{pmatrix} -5\\2 \end{pmatrix} - \begin{pmatrix} 4\\14 \end{pmatrix} \begin{bmatrix} = \begin{pmatrix} -9\\-12 \end{pmatrix} \end{bmatrix}$ oe		3	M1	a correct calculation for \overrightarrow{HF} or \overrightarrow{FH} (for this mark allow written as coordinates) Also allow eg 9 i + 12 j
	$\sqrt{"9"^2 + "12"^2} \text{or } \sqrt{("-9")^2 + ("-12")^2}$ Allow a complete method using their values for \overrightarrow{HF} or \overrightarrow{FH} Provided it is from $\begin{pmatrix} \pm 4 \\ \pm 14 \end{pmatrix} - \begin{pmatrix} \pm 5 \\ \pm 2 \end{pmatrix}$			M1indep	Allow their \overrightarrow{HF} or \overrightarrow{FH} provided it is from $\begin{pmatrix} \pm 4 \\ \pm 14 \end{pmatrix} - \begin{pmatrix} \pm 5 \\ \pm 2 \end{pmatrix}$ allowing any sign error if used $(-9)^2$ and $(-12)^2$ condone missing brackets if recovered
	Correct answer scores full marks (unless from obvious incorrect working) Watch out for a correct answer from wrong working eg -5 + 2 + 4 + 14 = 15	15		A1	from fully correct figures eg use of $\begin{pmatrix} 9\\ -12 \end{pmatrix}$ would give the correct answer but would not gain this accuracy mark
					Total 3 marks

18	y = -2x(+9) or gradient of line = -2		4	M1	a rearrangement with the correct <i>x</i> term or stating that the gradient of given line is -2
	Gradient of perpendicular = $\frac{1}{2}$ oe eg $\frac{-1}{-2}$			M1ft	For a statement that the gradient of the perpendicular line is $\frac{1}{2}$ or implication by equation of line with gradient $\frac{1}{2}$ (if a student goes straight to this stage then M2 is awarded) This mark can also be awarded for the perpendicular gradient of what they indicate the gradient of the original line to be
	eg $11 = "\frac{1}{2}" \times 8 + c$ or $y - 11 = "\frac{1}{2}"(x - 8)$ oe or $c = 7$			M1dep	dep on previous M1 being awarded; a correct method to find the equation of the perpendicular line by using their gradient of the perpendicular line and (8, 11)
	Correct answer scores full marks (unless from obvious incorrect working)	$y = \frac{1}{2}x + 7$		A1oe	a correct equation for the line in the form $y = mx + c$ (as requested) If no other marks awarded then award SCB1 for $y = -\frac{1}{2}x + 15$
					Total 4 marks

19 (i)	(0, 4)	1	B1	
(ii)	(5, 12)	1	B1	
(iii)	(5, -3)	1	B1	
			Total 3	marks

Working required $-2.1 < x < 1$ A1dep on M1 oe eg $x > -2.1$ (and) $x < 1$ (do not penalise 'or') or $\frac{-21}{10} < x < 1$ etc including the open interval (-2.1, 1) or]-2.1, 1[20	$\frac{(10x+21)(x-1) \text{ or}}{\frac{-11\pm\sqrt{(11)^2-4\times10\times-21}}{2\times10}}$ $10\left[\left(x+\frac{11}{20}\right)^2-\frac{121}{400}\right]-21(=0) \text{ oe}$ $(x=) 1, (x=)-2.1$		3	M1 A1	A correct method to solve the quadratic; correct factors or correct substitution into the formula or can be simplified as far as $\frac{-11\pm\sqrt{121+840}}{20}$ or correctly completing the square. (10)(x + 2.1)(x - 1) is not a correct factorisation – it is working backwards from calculator answers. dep on M1 for correct critical values
Total 3 mark		Working required	-2.1 < <i>x</i> < 1		A1	dep on M1 oe eg $x > -2.1$ (and) $x < 1$ (do not penalise 'or') or $\frac{-21}{10} < x < 1$ etc including the open interval (-2.1, 1) or]-2.1, 1[

21	5x + 3x + 2 = 26 oe		4	M1	a correct equation for <i>x</i>
	x = 3 Correct value of x scores M1A1 (unless from obvious incorrect working)		-	A1	
	$7 \times "3"$ oe eg "15" + "6" (where "15" is $5 \times "3"$ and "6" is $2 \times "3"$)			M1ft	use of their positive value for x in 7x (ie use of correct regions from Venn diagram for the set required)[their value is their value given for x which must be clearly assigned as x]
	Correct answer scores full marks (unless from obvious incorrect working)	21		A1	cao
					Total 4 marks

22	$(y-2)^2 + y^2 + y = 3$	$x^{2} + (x+2)^{2} + x + 2 = 3$		5	M1	substitution of linear equation into quadratic – allow one sign error in substituted expression
	$2y^2 - 3y + 1[=0]$ oe (any form with 3 terms)	$2x^2+5x+3[=0]$ oe (any form with 3 terms)			M1	Dep on M1 simplified to a 3 term quadratic with 2 or 3 of 3 terms correct
	$(2y-1)(y-1) [= 0]$ $\frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 2 \times 1}}{2 \times 2}$ $2[(y-\frac{3}{4})^2 - \frac{9}{16}] + 1 = 0 \text{ oe}$ (leading to y values of $\frac{1}{2}$ and 1) (allow x used for y here)	$(2x+3)(x+1) [= 0]$ $\frac{-5 \pm \sqrt{5^2 - 4 \times 2 \times 3}}{2 \times 2}$ $2[(x+\frac{5}{4})^2 - \frac{25}{16}] + 3 = 0$ oe (leading to x values of $-\frac{3}{2} \text{ and } -1)$ (allow y used for x)			M1ft	dep on M1 for solving <i>their</i> 3 term quadratic equation using any correct method (if factorising, allow brackets which expanded give 2 out of 3 terms correct) (if using formula allow one sign error and some simplification – allow as far as $\frac{3\pm\sqrt{9-8}}{4}$ or $\frac{-5\pm\sqrt{25-24}}{4}$) or if completing the square then as far as shown on LHS OR the correct values for <i>x</i> OR the correct values for <i>y</i>
	eg $(x =)$ " $\frac{1}{2}$ "-2 oe "1"-2 oe	$(y =) "-\frac{3}{2}"+2 \text{ oe},$ "-1"+2 oe			M1	dep on previous M1 for correct method to find both other values or a correct pair of values
	Working required		$x = -\frac{3}{2}, y = \frac{1}{2}$ x = -1, y = 1		A1	oe dep on M2 for all 4 values
						Total 5 marks

23	$16x^2 - 36 = (4x - 6)(4x + 6) [= 4(2x + 3)(2x - 3)]$ oe		4	M1indep	
	or				
	$16x^2 - 36 = (8x - 12)(2x + 3) [= 4(2x + 3)(2x - 3)]$ oe				
	$2x^2 + 7x + 6 = (2x+3)(x+2)$ and			M1indep	
	$x^2 - 5x - 14 = (x - 7)(x + 2)$				[NB: the two fractions when divided and cancelled give an answer of 4(2x-3) or $2(4x-6)$ or $8x - 12$ (any
	[We will make an exception of				one of these gain 2 marks)]
	$2x^2 + 7x + 6 = (4x + 6)(0.5x + 1)$				
	as this then cancels with $(4x + 6)$]				M2 for any fraction with completely simplified non-linear numerator and non-linear denominator that will cancel to -19
	4(2x-3) - (7+8x)(=n) [allow invisible brackets ie $8x - 12 - 7 + 8x$] or			M1	a linear expression that should give the correct value for <i>n</i> (this mark implies previous M marks
	an expression that clearly shows the numerator is – 19 times the denominator eg $\frac{-38x-57}{2x+3}$ (= <i>n</i>)				as not all factorising is necessary)
	Working required	-19		A1	dep on M2
					Total 4 marks

24	67 + 51 (= 118) or angle split into 67 and 51		6	M1	A diagram showing 118 or use of 118 in further calculations
	$AC^{2} = 8.4^{2} + 9.2^{2} - 2 \times 8.4 \times 9.2 \times \cos^{118} (= 227.(7615))$			M1	a correct method to find length AC^2
	(227 – 228)				
	$AC = \sqrt{8.4^2 + 9.2^2 - 2 \times 8.4 \times 9.2 \times \cos^{-1}18} (= 15.(09))$			M1	a correct method to find length AC
	(15 – 15.1)				
	$\frac{\sin ACB}{8.4} = \frac{\sin"118"}{"15.09"} \text{ or }$ $\frac{\sin BAC}{\sin BAC} = \frac{\sin"118"}{\sin \sin \pi} \text{ or }$			M1	dep on previous method marks a correct statement of the sine rule or the cosine rule to find angle <i>ACB</i> or
	9.2 "15.09"				angle BAC
	$\cos ACB = \frac{9.2^2 + "15.09"^2 - 8.4^2}{2 \times 9.2 \times "15.09"} \text{ or } \cos BAC = \frac{8.4^2 + "15.09"^2 - 9.2^2}{2 \times 8.4 \times "15.09"}$				[numbers in inverted commas must come from correct working]
	$(ACB =)\sin^{-1}\left(\frac{8.4\sin^{"}118"}{"15.09"}\right)$ or $\cos^{-1}\left(\frac{9.2^2 + "15.09"^2 - 8.4^2}{2 \times 9.2 \times "15.09"}\right) (= 29.(43))$			M1	a completely correct statement for angle <i>ACB</i> or angle <i>BAC</i>
	(29 – 30)				[numbers in inverted commas must
	$\left(BAC = \right)\sin^{-1}\left(\frac{9.2\sin^{"}118"}{"15.09"}\right) \text{ or } \cos^{-1}\left(\frac{8.4^2 + "15.09"^2 - 9.2^2}{2 \times 8.4 \times "15.09"}\right) (= 32.(56))$				come from correct a correct method]
	(32 - 33)				
	Correct answer scores full marks (unless from obvious incorrect working)	280		A1	allow 279 – 280
	Lest for orcles and longths on their discussion				a correct answer from a scale drawing
	Look for angles and lengths on their diagram				gains full marks but if answer is slightly inaccurate gains 0 marks
					Total 6 marks
					i utai u illal KS

25	eg tan $30 = \frac{x}{0.5AB}$ or $\tan 60 = \frac{0.5AB}{x}$ oe or $0.5AB = \frac{x}{\tan 30}$ or $0.5AB = x \tan 60$ oe or $\frac{1}{2}AB = \sqrt{3}x$		5	M1 (off sp without tan 60	pec but a student who knows ut calc that height of triangle = $3x$: $D = \frac{3x}{0.5AB}$ or $\sin 60 = \frac{3x}{BC}$)
	eg (AB =) 2x tan 60 or $\frac{2x}{\tan 30}$ or $2\sqrt{3}x$ or $3.46x$ oe OR area small $\sqcup \left(\frac{1}{6}shape\right) = \frac{1}{2} \times x \tan 60 \times x$ or $\frac{1}{2} \times \sqrt{3}x \times x$ or $\frac{\sqrt{3}}{2}x^2$			M1	Expression for side of triangle (<i>AB</i> or <i>BC</i> or <i>AC</i>) OR the area of one or more of the six triangles
	eg $6 \times \frac{1}{2} \times x \tan 60 \times x$ or $\frac{1}{2} \times (2x \tan 60)^2 \times \sin 60$ or $\frac{1}{2} \left(\frac{2x}{\tan 30}\right)^2 \sin 60$ or $\frac{1}{2} \times 2\sqrt{3}x \times \sqrt{\left(2\sqrt{3}x\right)^2 - \left(\sqrt{3}x\right)^2}$ or $0.5 \times 2\sqrt{3}x \times 3x$ or $3\sqrt{3}x^2$ or $5.19x^2$			M1	a correct expression for the area of triangle <i>ABC</i>
	$6 \times \frac{\sqrt{3}}{2} x^2 - \pi x^2 \text{or} 3\sqrt{3}x^2 - \pi x^2 \text{or} "5.19" x^2 - \pi x^2$ or $6 \times \frac{1}{2} \times \tan 60 \times x^2 - \pi x^2 \text{or} \frac{1}{2} \left(\frac{2x}{\tan 30}\right)^2 \sin 60 - \pi x^2 \text{oe}$			M1	a correct expression for the area of the shaded parts of the diagram or a correct equation for the shaded parts of the diagram
	Correct answer scores full marks (unless from obvious incorrect working) Look for values written on the diagram	2.05		A1	2.05 - 2.06
	SEE NEXT PAGE FOR USING A VALUE FOR RADIUS				Total 5 marks

25	eg tan $30 = \frac{100}{0.5AB}$ or $\tan 60 = \frac{0.5AB}{100}$ oe or $0.5AB = \frac{100}{\tan 30}$ or $0.5AB = 100 \tan 60$ oe or $\frac{1}{2}AB = \sqrt{3} \times 100$		5	M1 eg using radius = 100 ANY VALUE CAN BE USED CONSISTENTLY FOR AWARD OF MARKS
	eg (AB =) 200 tan 60 or $\frac{200}{\tan 30}$ or $200\sqrt{3}x$ or $346x$) or area small triangle $\left(\frac{1}{6}shape\right) = \frac{1}{2} \times "173" \times 100 (= 8660)$			M1 Expression for side of triangle or the area of one or more of the six triangles
	eg $\frac{1}{2} \times 200\sqrt{3} \times 200\sqrt{3} \times \sin 60 (= 51961.52)$ or or $6 \times \frac{1}{2} \times "173" \times 100 (= 6 \times "8660" = 51961.52)$			M1 a correct expression for the area of the triangle
	eg "51961.52"- $\pi \times 100^2 = 100^2 n$			M1 a correct equation for the area of the shaded parts of the diagram.
	<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	2.05		A1 2.05 – 2.06
	SEE PREVIOUS PAGE FOR USING x FOR RADIUS			Total 5 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom