Mathematics and the second sec

Edexcel IAL

51

Worksheet Answers

Discrete Random Variables

Eng. Nagy Elraheb

Discrete Random Variables

Exercise 1:

- 1 a This is not a discrete random variable, since height is a continuous quantity.
 - **b** This is a discrete random variable, since it is always a whole number and it can vary.
 - c This is not a variable at all, since the number of days in a week is always 7.
- 2 0, 1, 2, 3, 4
- **3 a** (2, 2) (2, 3) (3, 2) (3, 3)

b	i	x	4	5	6
		P(X = x)	0.25	0.5	0.25

ii $P(X = x) = \begin{cases} 0.25, x = 4, 6 \\ 0.5, x = 5 \end{cases}$

- $4 \frac{1}{12}$
- 5 k + 2k + 3k + 4k = 1,

so
$$10k = 1$$
, so $k = \frac{1}{10}$.

- **6 a** 0.125 **b** 0.875
- 7 a 0.3

b	x	-2	-1	0	1	2
	P(X = x)	0.1	0.1	0.3	0.3	0.2

- c 0.7
- 8 0.25
- 9 a 0.02
- **b** 0.46
- c 0.56

- **10 a** 0.625
- **b** 0.375
- c 0

11 a

s	1	2	3	4
P(S=s)	2/3	<u>2</u>	2 27	<u>1</u> 27

- $\mathbf{b} = \frac{1}{9}$
- 12 a

9	
x	$\mathbf{P}(X=x)$
0	0.07776
1	0.2592
2	0.3456
3	0.2304
4	0.0768
5	0.01024
	•

ł

y	P(Y=y)
0	0.32768
1	0.4096
2	0.2048
3	0.0512
4	0.0064
5	0.00032

c z P(Z = z)
1 0.4
2 0.24
3 0.144
4 0.0864

0.1296

- ${f 13}$ a The sum of the probabilities is not 1.
 - **b** $2\frac{22}{61}$

Exercise 2:

- 1 a 5 1 2 0.2 0.35 0.60 0.9 0.1 F(x)
 - **b** 0.9
 - 0.2
- 2 a \boldsymbol{x} 5 3 4 6 1 2 0.25 0.05 0.4 0.1 0.1 0.1 P(X = x)
 - **b** 0.5
- **c** 0.4 **3 a** $k = \frac{1}{18}$

	10						
b	x	1	2	3	4	5	6
	P(X=x)	1/18	1 18	1/5	1/5	$\frac{5}{18}$	$\frac{5}{18}$

- **4 a** $\alpha = 0.3$

b	x	-2	-1	0	1	2
	P(X = x)	0.1	0.1	0.25	0.25	0.3

- c 0.45
- 5 a
 - \mathbf{c} 5 2 3 P(X = x)
- **6 a** k = 1
 - b 3 \boldsymbol{x} P(X = x)

Exercise 3:

1 **a**
$$E(X) = 4.6$$
, $E(X^2) = 26$

b
$$E(X) = 0.3, E(X^2) = 2.5$$

2
$$E(X) = 4$$
, $E(X^2) = 18.2$

3 a	x	2	3	6
	P(X = x)	1/2	$\frac{1}{3}$	$\frac{1}{6}$

x	2	3	6	
P(X=x)	$\frac{1}{4}$	<u>1</u>	$\frac{1}{36}$	

b
$$E(X) = 3$$
, $E(X^2) = 11$

c $(E(X)^2) = 9$, therefore $(E(X)^2) \neq E(X)^2$

4 a	x	1	2	3	4	5
	P(X = x)	1/2	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{16}$

- **b** E(X) = 1.9375, $E(X^2) = 5.1875$
- c $(E(X)^2) = 3.754$, therefore $(E(X)^2) \neq E(X)^2$
- 5 $\alpha = 0.3, b = 0.3$
- 6 $\alpha = 0.1, b = 0.4$

7	x	1	2	3	4	5	6
	P(X = x)	1/8	1/8	1/8	1/8	$\frac{3}{20}$	$\frac{7}{20}$

8 \$2.78

Exercise 4:

- 1 a 1 **b** 2
- 2 **a** $E(X) = \frac{11}{6} = 1.83, Var(X) = \frac{17}{36} = 0.472$ **b** E(X) = 0, Var(X) = 0.5

 - c E(X) = -0.5, Var(X) = 2.25
- 3 E(Y) = 4.5, Var(Y) = 5.25

s	P(S = s)
2	$\frac{1}{36}$
3	$\frac{2}{36}$
4	$\frac{3}{36}$
5	$\frac{4}{36}$
6	5 36
7	$\frac{6}{36}$
8	$\frac{\frac{6}{36}}{\frac{5}{36}}$
9	$\frac{4}{36}$
10	$\frac{3}{36}$
11	$\frac{\frac{2}{36}}{\frac{1}{36}}$
12	1/36

- **b** 7
- c 5.833
- **d** 2.415
- 5 a

d	0	1	2	3
$\mathbf{P}(D=d)$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{1}{8}$

- **b** 1.25
- c $\frac{15}{16} = 0.9375$ 6 a P(T = 1) = P(head) = 0.5

 $P(T = 2) = P(tail, head) = 0.5 \times 0.5 = 0.25$

- P(T = 3) = 1 P(T = 1) P(T = 2) = 0.25
- **b** E(T) = 1.75, Var(T) = $\frac{11}{16}$ = 0.688. **7 a** E(X) = $4\alpha + 2b$
- - **b** $\alpha = 0.375, b = 0.25$

Exercise 5:

- 3 1 a -1 1 5 0.2 P(Y = y)0.3 0.4 0.1
 - **b** E(Y) = 2.8
 - E(X) = 2.9 and 2E(X) 3 = 5.8 3 = 2.8 = E(Y) \mathbf{c}
- 2 a 1 8 -8-1 0 y 0.1 0.1 0.2 0.4 0.2 P(Y = y)
 - **b** E(Y) = 1.1
- 3 a 8
- **b** 4 c 2
- **d** 18

- 8 \mathbf{e} 4 a 6
- **f** 3
- **b** -9
- c -2
- **d** 1

- \mathbf{e} **5 a** 4μ
- **b** $2\mu + 2$
- c $2\mu 2$
- d $4\sigma^2$

 $e 4\sigma^2$

9

6 a 3.5

b Y = 200 + 100X

c E(Y) = 550

7 726.5 cm³

8 **a** E(X) = 1.25, Var(X) = 0.9375

b $E(Y) = \frac{1}{4} \times 1 + \frac{3}{8} \times 2 + \frac{1}{4} \times 4 + \frac{1}{8} \times 8 = 3$

 $E(Z) = 2E(X) + \frac{1}{2} = 3$

c Var(Z) = 4Var(X) = 3.75

Exercise 6:

1 a E(X) = 2

b Var(X) = 2 **c** 1.414

b Var(X) = 4 **c** $E(X^2) = 8$ **2 a** E(X) = 2

3 a = 0.1, b = 0.4

4 a $-0.3 \le E(Y) \le 0.4$

b a = 0.5, b = 0.2

Exercise 7:

E(X) = 3, Var(X) = 21

2 a 4

a Expectation = 3.5 and variance = $2\frac{11}{12}$

b Expectation = 11 and Variance =33

5 A discrete uniform distribution is not likely to be a good a model for this distribution. The game depends on the skills of the player. The points are likely to cluster around the middle.

6 a Discrete uniform distribution

b E(X) = 4.5

c Var(X) = 5.25

d The expected winnings are less than the 5 cents stake.