

1. [April 2019 qp1 #28]

The diagram shows an isosceles triangle ABE and a quadrilateral BCDE.

AD is a straight line.

- (a) Calculate the value of p and the value of q.
 - In triangle ABE BA = BE $\angle p = 180 - (62 + 62) = 56^{\circ}$ $\angle BEP = 180 - 62 = 118^{\circ}$ $\angle q = 360 - (118 + 90 + 132)$ $= 20^{\circ}$

p =**56**⁰

(b) Hassan says that the quadrilateral BCDE is a kite.

Tick (\checkmark) to show if Hassan is correct or not correct.

Give a reason for your answer.

Adjacent sides BC and BE are not equa	

Another reason can be \angle C and \angle BED are not equal

2. [October 2018 qp1 #5]

The diagram shows 5 angles.

5. [October 2017 qp2 #4]

In this diagram AB is parallel to CD and ECD is a triangle.

Work out the values of a, b and c

a = 45 ⁰ (alternating)	a =45°
b = 80 ⁰ (corresponding)	b =80°
$c = 180^{\circ} - (80 + 45) = 55^{\circ}$	c =

6. [April 2016 qp1 #26]

In the diagram *AB* is parallel to *CD*.

Triangle ACE is an isosceles triangle.

 7. [October 2015 qp1 #21]

British Maths

The diagram shows two straight lines, ABC and EDC

9. [October 2005 qp2 #6]

In the diagram, which is not drawn accurately, *ABC* is a straight line parallel to *DF*. BD = DE.

Work out the size of the angles marked p, q, r, and s.

 $p = 180 - (80 + 36) = 64^{0}$ $q =64^{0}$ $q =64^{0}$ $q =64^{0}$ $r =64^{0}$